题目内容

已知函数数学公式
(Ⅰ)讨论f(x)的奇偶性;
(Ⅱ)判断f(x)在(-∞,0)上的单调性并用定义证明.

解:(Ⅰ)由题意可得 ≠0,解得 x≠0,故函数f(x)的定义域为{x|x≠0}关于原点对称.
,可得
若f(x)=f(-x),则,无解,故f(x)不是偶函数.
若f(-x)=-f(x),则a=0,显然a=0时,f(x)为奇函数.
综上,当a=0时,f(x)为奇函数;当a≠0时,f(x)不具备奇偶性
(Ⅱ)函数f(x)在(-∞,0)上单调递增;
证明:设 x1<x2<0,则
由x1<x2<0,可得 x1x2>0,x2 -x1>0,
从而,故f(x2)>f(x1),
∴f(x)在(-∞,0)上单调递增.
分析:(Ⅰ)先求出函数的定义域关于原点对称,若f(x)=f(-x),则,无解,故f(x)不是偶函数;若f(-x)=-f(x),则a=0,显然a=0时,f(x)为奇函数,由此得出结论.
(Ⅱ)判断函数f(x)在(-∞,0)上单调递增,设 x1<x2<0,证明f(x2)-f(x1)>0,从而得出结论.
点评:本题主要考查函数的单调性和奇偶性的判断、证明,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网