题目内容
数列{an}的通项an=n2(cos2
-sin2
),n∈N*,Sn为前n项和
(1)求S3、S6的值
(2)求前3n项的和S3n
(3)若bn=
,求数列{bn}的前n项和Tn.
| nπ |
| 3 |
| nπ |
| 3 |
(1)求S3、S6的值
(2)求前3n项的和S3n
(3)若bn=
| s3n |
| n-4n |
(1)an=n2(cos2
-sin2
)
=n2cos
,n∈N*,
cos
以3为周期.
∴S3=a1+a2+a3
=cos
+22cos
+32cos
=-
+4×(-
) +9×1=
.
S6=(a1+a2+a3)+(a4+a5+a6)
=[-
+4×(-
)+9×1]+[16×(-
)+25×(-
) +36×1]
=22.
(2)∵a3n-2+a3n-1+a3n
=(3n-2)2•(-
) +(3n-1)2•(-
) +(3n)2•1=9n-
,
∴S3n=(a1+a2+a3)+(a4+a5+a6)+…+(a3n-2+a3n-1+a3n)
=(9-
)+(9×2-
)+…+(9n-
)
=9(1+2+…+n)-
=
.(9分)
(3)bn=
=
•(
)n,
∴Tn=
(
+
+
+…+
),
∴4Tn=
(13+
+
+…+
),
∴3Tn=
(13+
+
+…+
-
)
=8-
-
,
∴Tn=
-
-
.(14分).
| nπ |
| 3 |
| nπ |
| 3 |
=n2cos
| 2nπ |
| 3 |
cos
| 2nπ |
| 3 |
∴S3=a1+a2+a3
=cos
| 2π |
| 3 |
| 4π |
| 3 |
| 6π |
| 3 |
=-
| 1 |
| 2 |
| 1 |
| 2 |
| 13 |
| 2 |
S6=(a1+a2+a3)+(a4+a5+a6)
=[-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=22.
(2)∵a3n-2+a3n-1+a3n
=(3n-2)2•(-
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
∴S3n=(a1+a2+a3)+(a4+a5+a6)+…+(a3n-2+a3n-1+a3n)
=(9-
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
=9(1+2+…+n)-
| 5n |
| 2 |
| 9n2+4n |
| 2 |
(3)bn=
| S3n |
| n•4n |
| 9n+4 |
| 2 |
| 1 |
| 4 |
∴Tn=
| 1 |
| 2 |
| 13 |
| 4 |
| 22 |
| 42 |
| 31 |
| 43 |
| 9n+4 |
| 4n |
∴4Tn=
| 1 |
| 2 |
| 22 |
| 4 |
| 31 |
| 42 |
| 9n+4 |
| 4n-1 |
∴3Tn=
| 1 |
| 2 |
| 9 |
| 4 |
| 9 |
| 42 |
| 9 |
| 4n-1 |
| 9n+4 |
| 4n |
=8-
| 1 |
| 2 2n-3 |
| 9n |
| 22n+1 |
∴Tn=
| 8 |
| 3 |
| 1 |
| 3•22n-3 |
| 3n |
| 2 2n+1 |
练习册系列答案
相关题目
设Sn是等差数列{an}前n项和,若a4=9,S3=15,则数列{an}的通项为( )
| A、2n-3 | B、2n-1 | C、2n+1 | D、2n+3 |