题目内容

如图2-1-10,在Rt△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于E点,D为AC的中点,连结BD交⊙O于F点.

图2-1-10

求证:.

思路分析:要证,虽然四条线段分别在△BEF与△BCF中,但这两个三角形一个是钝角三角形,另一个是直角三角形,不可能相似,故只能够借助中间比.

证明:连结CE,∵BC为⊙O的直径,∴∠BFC=90°,∠BEC=90°.

又∵∠ACB=90°,∴∠BCE=∠A.

又∵∠BFE=∠BCE,∴∠BFE=∠A.

∴△BEF∽△BAD.∴.

∵∠BFC=∠BCA,∠CBD=∠CBD,

∴△CBF∽△DBC.∴.

又∵AD=CD,∴.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网