题目内容
【题目】选修4-5:不等式选讲
已知函数
.
(1)若
,求不等式
的解集;
(2)若
时,
恒成立,求
的取值范围.
【答案】(1)解集为R(2)-4≤
≤1
【解析】
(1)化简
得|x+
|+|x-2|≥3,利用绝对值不等式的性质可得|x+
|+|x-2|≥|
+2|,结合
即可得到
恒成立,问题得解。
(2)由
化简
得:|x+
|≤3,利用绝对值不等式的解法可得:-3-x≤
≤3-x恒成立,问题得解。
解:(1)|x+
|+|x-2|-1≥2,即|x+
|+|x-2|≥3
∵|x+
|+|x-2|≥|
+2|
又
≥1,∴
+2≥3
∴不等式
的解集为R.
(2)若x∈[1,2],f(x)=|x+
|+2-x-1,
则f(x)+x≤4等价于|x+
|≤3恒成立,
即-3-x≤
≤3-x,
所以-4≤
≤1
练习册系列答案
相关题目