题目内容

设数列{an}的前n项和为Sn,且
(1)求a1,a2
(2)求证:数列是等差数列,并求Sn的表达式.

(1)解:当n=1时,
由已知得
解得
同理,可解得   
(2)证明 :由题设
当n≥2(n∈N*)时,an=Sn-Sn-1代入上式,得



是首项为,公差为-1的等差数列,

练习册系列答案
相关题目