题目内容

在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N+)成立,类比上述性质,相应的在等比数列{bn}中,若b11=1,则有等式________.

b1b2b3…bn=b1b2b3…b21-n(n<21,n∈N+
分析:根据类比的规则,和类比积,加类比乘,由类比规律得出结论即可
解答:在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N+)成立,
故相应的在等比数列{bn}中,若b11=1,则有等式b1b2b3…bn=b1b2b3…b21-n(n<21,n∈N+
故答案为b1b2b3…bn=b1b2b3…b21-n(n<21,n∈N+
点评:本题考查类比推理,解题的关键是掌握好类比推理的定义及两类事物之间的共性,由此得出类比的结论即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网