题目内容
(2012•南宁模拟)设数列{an}的前n项和为,已知a1=1,Sn+1=2Sn+n+1(n∈N*),
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
,数列{bn}的前项和为Tn,n∈N*证明:Tn<2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
| n | an+1-an |
分析:(Ⅰ)由Sn+1=2Sn+n+1(n∈N*),得当n≥2时,Sn=2Sn-1+n,两式相减得,an+1=2an+1,构造等比数列{an+1}并求其通项公式,再求出数列{an}的通项公式.
(Ⅱ)bn=
=
=
,利用错位相消法求和.
(Ⅱ)bn=
| n |
| (2n+1-1)-(2n-1) |
| n |
| 2n+1-2n |
| n |
| 2n |
解答:解:(Ⅰ)∵Sn+1=2Sn+n+1(n∈N*)
当n≥2时,Sn=2Sn-1+n,两式相减得,
an+1=2an+1,两边加上1得出an+1+1=2(an+1),
又S2=2S1+1,a1=S1=1,∴a2=3,a2+1=2(a1+1)
所以数列{an+1}是公比为2的等比数列,首项a1+1=2,
数列{an+1}的通项公式为an+1=2•2n-1=2n,
∴an=2n-1
(Ⅱ)∵an=2n-1,
∴bn=
=
=
Tn=
+
+
+… +
Tn=
+
+…+
+
两式相减得
Tn=
+
+
+…+
-
Tn=2(
+
+
+…+
-
)=2-
-
<2.
当n≥2时,Sn=2Sn-1+n,两式相减得,
an+1=2an+1,两边加上1得出an+1+1=2(an+1),
又S2=2S1+1,a1=S1=1,∴a2=3,a2+1=2(a1+1)
所以数列{an+1}是公比为2的等比数列,首项a1+1=2,
数列{an+1}的通项公式为an+1=2•2n-1=2n,
∴an=2n-1
(Ⅱ)∵an=2n-1,
∴bn=
| n |
| (2n+1-1)-(2n-1) |
| n |
| 2n+1-2n |
| n |
| 2n |
Tn=
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 2 |
| 23 |
| n-1 |
| 2n |
| n |
| 2n+1 |
两式相减得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n |
| 2n+1 |
Tn=2(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n |
| 2n+1 |
| 1 |
| 2n-1 |
| n |
| 2n |
点评:本题主要考查数列通项公式求解:利用了an与Sn关系以及构造法.形如an+1=pan+q递推数列,这种类型可转化为an+1+m=4(an+m)构造等比数列求解.还考查错位相消法求和.
练习册系列答案
相关题目