题目内容

设函数f(x)=+lnx在[1,+∞)上为增函数.

(1)求正实数a的取值范围;

(2)若a=1,求证: +++…+<lnnn++++…+(nN*n≥2).

(1)解:由已知,f′(x)=(a>0),                                                               ?

依题意得≥0对x∈[1,+∞)恒成立,                                                         ?

ax-1≥0对x∈[1,+∞)恒成立.?

a-1≥0,即a≥1.                                                                                               ?

(2)证明:∵a=1,?

∴由(1)知,f(x)=+lnx在[1,+∞)上为增函数.?

∴当n≥2时,f()=+ln=ln-f(1)=0,?

<ln.                                                                                                       ?

+++…+<ln+ln+…+ln=lnn.                                            ?

g(x)=lnx-x,x∈[1,+∞),则?

g′(x)= -1≤0对x∈[1,+∞)恒成立.?

g(x)在[1,+∞)上为减函数.                                                                         ?

n≥2时,g()=ln-g(1)=-1<0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网