题目内容
| π | 6 |
(I)求证:平面COD⊥平面AOB;
(II)求异面直线AO与CD所成角的大小.
分析:(1)欲证平面COD⊥平面AOB,先证直线与平面垂直,由题意可得:CO⊥AO,BO⊥AO,CO⊥BO,所以CO⊥平面AOB.
(2)求异面直线所成的角,需要将两条异面直线平移交于一点,由D为AB的中点,故平移时很容易应联想到中位线,作DE⊥OB,垂足为E,连接CE,则DE∥AO,所以∠CDE是异面直线AO与CD所成的角,利用解三角形的有关知识夹角问题即可.
(2)求异面直线所成的角,需要将两条异面直线平移交于一点,由D为AB的中点,故平移时很容易应联想到中位线,作DE⊥OB,垂足为E,连接CE,则DE∥AO,所以∠CDE是异面直线AO与CD所成的角,利用解三角形的有关知识夹角问题即可.
解答:解:(1)∵Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到
∴CO⊥AO,BO⊥AO
又∵二面角B-AO-C是直二面角
∴∠BOC是二面角B-AO-C的平面角
∴∠BOC=90°
∴CO⊥BO,又AO∩BO=O
∴CO⊥平面AOB
∵CO?面COD
∴平面COD⊥平面AOB
(2)作DE⊥OB,垂足为E,连接CE,所以DE∥AO
∴∠CDE是异面直线AO与CD所成的角.
在 Rt△COE中,CO=BO=2,OE=
BO=1
∴CE=
=
又∵DE=
AO=
∴CD=
=2
∴在Rt△CDE中,cos∠CDE=
=
∴异面直线AO与CD所成角为arcos
.
∴CO⊥AO,BO⊥AO
又∵二面角B-AO-C是直二面角
∴∠BOC是二面角B-AO-C的平面角
∴∠BOC=90°
∴CO⊥BO,又AO∩BO=O
∴CO⊥平面AOB
∵CO?面COD
∴平面COD⊥平面AOB
(2)作DE⊥OB,垂足为E,连接CE,所以DE∥AO
∴∠CDE是异面直线AO与CD所成的角.
在 Rt△COE中,CO=BO=2,OE=
| 1 |
| 2 |
∴CE=
| CO2+ OE2 |
| 5 |
又∵DE=
| 1 |
| 2 |
| 3 |
∴CD=
| CE2+DE2 |
| 2 |
∴在Rt△CDE中,cos∠CDE=
| DE |
| CD |
| ||
| 4 |
∴异面直线AO与CD所成角为arcos
| ||
| 4 |
点评:本小题主要考查空间线面关系、异面直线所成的角的度量、线面角的度量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力!
练习册系列答案
相关题目