题目内容
已知函数f(x)=| 3 |
| π |
| 6 |
| π |
| 12 |
(1)求函数f(x)的最小正周期;
(2)求使函数f(x)取得最大值的x的集合.
分析:(1)先将函数f(x)化简为:f(x)=2sin(2x-
)+1,根据T=
=π得到答案.
(2)因为f(x)取最大值时应该有sin(2x-
)=1成立,即2x-
=2kπ+
,可得答案.
| π |
| 3 |
| 2π |
| 2 |
(2)因为f(x)取最大值时应该有sin(2x-
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
解答:解:(1)f(x)=
sin(2x-
)+1-cos2(x-
)
=2[
sin2(x-
)-
cos2(x-
)]+1
=2sin[2(x-
)-
]+1
=2sin(2x-
)+1
∴T=
=π
(2)当f(x)取最大值时,sin(2x-
)=1,有2x-
=2kπ+
即x=kπ+
(k∈Z)
∴所求x的集合为{x∈R|x=kπ+
,(k∈Z)}.
| 3 |
| π |
| 6 |
| π |
| 12 |
=2[
| ||
| 2 |
| π |
| 12 |
| 1 |
| 2 |
| π |
| 12 |
=2sin[2(x-
| π |
| 12 |
| π |
| 6 |
=2sin(2x-
| π |
| 3 |
∴T=
| 2π |
| 2 |
(2)当f(x)取最大值时,sin(2x-
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
即x=kπ+
| 5π |
| 12 |
∴所求x的集合为{x∈R|x=kπ+
| 5π |
| 12 |
点评:本题主要考查三角函数的最小正周期的求法和三角函数的最值问题.属基础题.
练习册系列答案
相关题目
已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}( )
| A、是等比数列 | B、是等差数列 | C、从第2项起是等比数列 | D、是常数列 |