题目内容
(2007•天津一模)已知数列{an}满足a1=
,an•an+1=
(
)n(n∈N*)
(1)求数列{an}的通项公式;
(2)若数列{bn}的前n项和Sn=n2,Tn=a1b1+a2b2+a3b3+…+anbn,求证:Tn<3.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
(1)求数列{an}的通项公式;
(2)若数列{bn}的前n项和Sn=n2,Tn=a1b1+a2b2+a3b3+…+anbn,求证:Tn<3.
分析:(1)由已知可得
=
,于是
=
.又由a1可得a2,进而可得{an}是一个等比数列;
(2)利用bn=
即可得出an,再利用“错位相减法”即可得出.
| an+1an+2 |
| anan+1 |
| ||||
|
| an+2 |
| an |
| 1 |
| 4 |
(2)利用bn=
|
解答:解:(1)
=
,∴
=
.
又∵a1=
,a1a2=
×
,∴a2=
=
×
,
∴{an}是公比为
的等比数列,
∴an=(
)n.
(2)当n=1时,b1=S1=1,
当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1.n=1时也成立.
∴bn=2n-1,
∵Tn=
+
+
+…
+
①
∴
Tn=
+
+
+…+
+
②
①-②得:
Tn=
+
+
+…+
-
=
-
,
∴Tn=3-
,
∴Tn<3.
| an+1an+2 |
| anan+1 |
| ||||
|
| an+2 |
| an |
| 1 |
| 4 |
又∵a1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
∴{an}是公比为
| 1 |
| 2 |
∴an=(
| 1 |
| 2 |
(2)当n=1时,b1=S1=1,
当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1.n=1时也成立.
∴bn=2n-1,
∵Tn=
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-3 |
| 2n-1 |
| 2n-1 |
| 2n |
∴
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 5 |
| 24 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n+1 |
①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n |
| 2n-1 |
| 2n+1 |
| 3 |
| 2 |
| 2n+3 |
| 2n+1 |
∴Tn=3-
| 2n+3 |
| 2n |
∴Tn<3.
点评:熟练掌握利用bn=
即可得出an、“错位相减法”、等比数列的定义及其通项公式是解题的关键.
|
练习册系列答案
相关题目