题目内容

对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数.计算:[log21]+[log22]+[log23]+[log24]+…+[log21024]的值=   
【答案】分析:根据符号[x]的定义,逐项求出值,注意值的部分相等性,再借助于数列求和运算得出结果.
解答:解:当[log2x]=n,n∈N时,2n≤x<2 n+1,若x是正整数,则x共有2n项∴原式=0+(1+1)+(2+2+2+2)+(3+3+3+3+3+3+3+3)+…+(9+9+…9)+10
=0+2×1+22×2+23×3+24×4+…29×9+10.令S=2×1+22×2+23×3+24×4+…29×9①则2S=22×1+23×2+24×3+24×4+…29×8+210×9②
①-②得-S=21+22+23+24+…+29-210×9=-2(1-29)-210×9=-8194.
∴原式8194+10=8204
故答案为:8204.
点评:本题是新定义,考查理解、分析,计算能力.新定义类型题目要准确理解、把握住定义的本质,转化成已有的知识和方法解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网