题目内容
已知数列{an}的各项都为正数,a1=1,前n项和Sn满足Sn-Sn-1=
+
(n≥2).
(Ⅰ)求证:数列{
}是等差数列;
(Ⅱ)令bn=
(n∈N*),求数列{bn}的前n项和Tn.
| Sn |
| Sn-1 |
(Ⅰ)求证:数列{
| Sn |
(Ⅱ)令bn=
| 1 |
| anan+1 |
分析:(Ⅰ)Sn-Sn-1=
+
(n≥2),因式分解后可化简为,
-
=1(n≥2),利用等差数列的定义可作出判断;
(Ⅱ)由(Ⅰ)可求得
,Sn,进而可求得an,bn,利用裂相消法可求得Tn.
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
(Ⅱ)由(Ⅰ)可求得
| Sn |
解答:解:(Ⅰ)∵Sn-Sn-1=
+
(n≥2),
∴(
+
)(
-
)=
+
,
又∵an>0,∴
+
>0,∴
-
=1(n≥2),
∴数列{
}是等差数列,首项为
=1,公差为1;
(Ⅱ)由(Ⅰ)得
=1+n-1=n,∴Sn=n2,
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1;
又a1=1,∴数列{an}的通项公式为an=2n-1.
∴bn=
=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)=
(1-
)=
.
| Sn |
| Sn-1 |
∴(
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
又∵an>0,∴
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
∴数列{
| Sn |
| S1 |
(Ⅱ)由(Ⅰ)得
| Sn |
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1;
又a1=1,∴数列{an}的通项公式为an=2n-1.
∴bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
点评:本题考查数列递推式、等差关系的确定及数列求和问题,考查学生的运算求解能力,裂项相消法对数列求和是高考考查重点内容,要熟练掌握.
练习册系列答案
相关题目