题目内容
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(1)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
(1)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:
| 品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
| 品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
(1)X的分布列为
2
(2)应该选择种植品种乙
| X | 0 | 1 | 2 | 3 | 4 |
| P |
(2)应该选择种植品种乙
解:(1)X可能的取值为0,1,2,3,4,
且P(X=0)=
P(X=2)=
P(X=4)=
| X | 0 | 1 | 2 | 3 | 4 |
| P |
E(X)=0×
(2)品种甲的每公顷产量的样本平均数和样本方差分别为:
S2甲=
品种乙的每公顷产量的样本平均数和样本方差分别为:
S2乙=
由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.
练习册系列答案
相关题目