题目内容
已知数列{an}的前n项和为Sn=-
n2+
n,试求出数列{|an|}的前n项和Tn.
a1=S1=-
+
=101.
当n≥2时,an=Sn-Sn-1=-3n+104.
∵a1也适合an=-3n+104,
∴数列{an}的通项公式为an=-3n+104(n∈N*).
由an=-3n+104≥0,得n≤34.7,即当n≤34时,an>0;当n≥35时,an<0.
(1)当n≤34时,
Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=-
n2+
n.
(2)当n≥35时,
Tn=|a1|+|a2|+…+|a34|+|a35|+|a36|+…+|an|
=(a1+a2+…+a34)-(a35+a36+…+an)
=2(a1+a2+…+a34)-(a1+a2+…+an)
=2S34-Sn
=2(-
×342+
×34)-(-
n2+
n)
=
n2-
n+3 502.
故Tn=![]()
解析:
对于带绝对值号的数列求和问题,应先弄清n取什么值时an>0或an<0,然后求解.本题的易错点在于对n在什么范围内取值时an>0或an<0的讨论.应注意的是当n≥35时,|an|=-an也是一个等差数列,在这种情况下如何求和的问题要掌握好.由Sn=-
n2+
n,知Sn是关于n的常数项为0的二次式,所以{an}是等差数列,进而求出通项an,然后再判断哪些项为正的,哪些项为负的,最后求?出Tn.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |