题目内容

已知数列{an}的前n项和Sn=-an-(
1
2
n-1+2(n为正整数).
(1)令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;
(2)令cn=
n+1
n
an,若Tn=c1+c2+…+cn,求Tn
(1)在Sn=-an-(
1
2
n-1+2中令n=1可得s1=-a1-1+2=a1即a1=
1
2

当n≥2时an=Sn-Sn-1=-an+an-1+(
1
2
)
n-1

∴2an=an-1+(
1
2
)
n-1
2nan=2n-1an-1+1
∵bn=2nan
∴bn-bn-1=1即当n≥2时bn-bn-1=1
又∵b1=2a1=1
∴数列{bn}是首项和公差均为1的等差数列.
bn=1+(n-1)×1=n=2nan
an=
n
2n

(2)由(1)得cn=(n+1)(
1
2
)
n

Tn=2×
1
2
+3×(
1
2
)
2
+4×(
1
2
)
3
+
…+(n+1)(
1
2
)
n
  ①
1
2
T
n
=2×(
1
2
)
2
+3×(
1
2
)
3
+4×(
1
2
)
4
+…+(n+1)(
1
2
)
n+1
   ②
由①-②得
1
2
T
n
=1+(
1
2
)
2
+(
1
2
)
3
+…+(
1
2
)
n
-(n+1)(
1
2
)
n+1
=
3
2
-
n+3
2n

∴Tn=3-
n+3
2n
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网