题目内容
已知数列{an} 的前n项和为Sn,且Sn+an=| n2+3n+5 |
| 2 |
(1)证明:数列{an-n}为等比数列;
(2)设bn=Sn+
| 5 |
| 2n+1 |
| 5 |
| 2 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
分析:(1)由题意知当n=1时,2a1=
?a1=
,a1-1=
,n≥2时an=Sn-Sn-1,得2an-an-1=n+1,即可证明结论;
(2)先由(1)求得数列{bn}的通项公式并整理成bn=
,从而
=
=2(
-
),然后利用列项求和求出Tn=2(1-
),求出数列{bn}的前n项和 Tn<2.
| 1+3+5 |
| 2 |
| 9 |
| 4 |
| 5 |
| 4 |
(2)先由(1)求得数列{bn}的通项公式并整理成bn=
| n2+n |
| 2 |
| 1 |
| bn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
解答:证明:(1)当n=1时,
2a1=
?a1=
,a1-1=
当n≥2时,Sn+an=
①
Sn-1+an-1=
②
①-②得2an-an-1=n+1
∴2an=an-1+(n+1)
即2an-2n=an-1-(n-1),2(an-n)=an-1-(n-1),
即
=
∴数列数列{an-n}是以
为首项,
为公比的等比数列.
(2)由(1)得an-n=
•(
)n-1
∴an=n+
•(
)n-1
∴Sn=
-n-
=
-
∴bn=Sn+
-
=
∴
=
=2(
-
)
∴Tn=2(1-
+
-
+…+
-
)
=2(1-
)<2.
2a1=
| 1+3+5 |
| 2 |
| 9 |
| 4 |
| 5 |
| 4 |
当n≥2时,Sn+an=
| n2+3n+5 |
| 2 |
Sn-1+an-1=
| (n-1)2+3(n-1)+5 |
| 2 |
①-②得2an-an-1=n+1
∴2an=an-1+(n+1)
即2an-2n=an-1-(n-1),2(an-n)=an-1-(n-1),
即
| an-n |
| an-1- (n-1) |
| 1 |
| 2 |
∴数列数列{an-n}是以
| 5 |
| 4 |
| 1 |
| 2 |
(2)由(1)得an-n=
| 5 |
| 4 |
| 1 |
| 2 |
∴an=n+
| 5 |
| 4 |
| 1 |
| 2 |
∴Sn=
| n2+3n+5 |
| 2 |
| 5 |
| 2n+1 |
| n2+n+5 |
| 2 |
| 5 |
| 2n+1 |
∴bn=Sn+
| 5 |
| 2n+1 |
| 5 |
| 2 |
| n2+n |
| 2 |
∴
| 1 |
| bn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
点评:本题考查了等比数列的判定,此题采取裂项的方法求和,考查分析解决问题的能力和运算能力,属于难题.
练习册系列答案
相关题目