题目内容
14.已知函数f(x)=(x-x1)(x-x2)(x-x3),x1,x2,x3∈R,且x1<x2<x3.(1)当x1=0,x2=1,x3=2时,求函数f(x)的减区间;
(2)求证:方程f′(x)=0有两个不相等的实数根;
(3)若方程f′(x)=0的两个实数根是α,β(α<β),试比较$\frac{{x}_{1}+x{\;}_{2}}{2}$,$\frac{x{\;}_{2}+x{\;}_{3}}{2}$与α,β的大小,并说明理由.
分析 (1)当x1=0,x2=1,x3=2时,化简f(x)=x(x-1)(x-2),再求导并令f′(x)=3x2-6x+2<0,从而解得;
(2)先求导f′(x)=(x-x2)(x-x3)+(x-x1)(x-x3)+(x-x1)(x-x2),从而可判断f′(x1)=(x1-x2)(x1-x3)>0,f′(x2)<0,f′(x3)>0,从而由函数零点的判定定理证明即可;
(3)易知f′(α)=f′(β)=0,再求得f′($\frac{{x}_{1}+x{\;}_{2}}{2}$)=($\frac{{x}_{1}+x{\;}_{2}}{2}$-x2)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x3)+($\frac{{x}_{1}+x{\;}_{2}}{2}$-x1)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x3)+($\frac{{x}_{1}+x{\;}_{2}}{2}$-x1)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x2)=-$\frac{1}{4}$(x1-x2)2<0,f′($\frac{x{\;}_{2}+x{\;}_{3}}{2}$)<0,从而结合二次函数的图象可比较四个数的大小.
解答 解:(1)当x1=0,x2=1,x3=2时,
f(x)=x(x-1)(x-2),
令f′(x)=3x2-6x+2<0解得,
$\frac{3-\sqrt{3}}{3}$<x<$\frac{3+\sqrt{3}}{3}$,
故函数f(x)的减区间为($\frac{3-\sqrt{3}}{3}$,$\frac{3+\sqrt{3}}{3}$);
(2)证明:∵f(x)=(x-x1)(x-x2)(x-x3),
∴f′(x)=(x-x2)(x-x3)+(x-x1)(x-x3)+(x-x1)(x-x2),
又∵x1<x2<x3,
∴f′(x1)=(x1-x2)(x1-x3)>0,
f′(x2)=(x2-x1)(x2-x3)<0,
f′(x3)=(x3-x2)(x3-x1)>0,
故函数f′(x)在(x1,x2),(x2,x3)上分别有一个零点,
故方程f′(x)=0有两个不相等的实数根;
(3)∵方程f′(x)=0的两个实数根是α,β(α<β),
∴f′(α)=f′(β)=0,
而f′($\frac{{x}_{1}+x{\;}_{2}}{2}$)=($\frac{{x}_{1}+x{\;}_{2}}{2}$-x2)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x3)+($\frac{{x}_{1}+x{\;}_{2}}{2}$-x1)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x3)+($\frac{{x}_{1}+x{\;}_{2}}{2}$-x1)($\frac{{x}_{1}+x{\;}_{2}}{2}$-x2)
=-$\frac{1}{4}$(x1-x2)2<0,
f′($\frac{x{\;}_{2}+x{\;}_{3}}{2}$)=($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x2)($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x3)+($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x1)($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x3)+($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x1)($\frac{x{\;}_{2}+x{\;}_{3}}{2}$-x2)
=-$\frac{1}{4}$(x3-x2)2<0,
再结合二次函数的图象可知,
α<$\frac{{x}_{1}+x{\;}_{2}}{2}$<$\frac{x{\;}_{2}+x{\;}_{3}}{2}$<β.
点评 本题考查了导数的综合应用及二次函数的性质,同时考查了函数的零点的判定定理的应用,属于中档题.
| 组别 | 月用电量 | 频数统计 | 频数 | 频率 |
| 1 | [0,20) | |||
| 2 | [20,40) | 正正一 | ||
| 3 | [40,60) | 正正正正 | ||
| 4 | [60,80) | 正正正正正 | ||
| 5 | [80,100) | 正正正正 | ||
| 6 | [100,120) |
(Ⅱ)根据已有信息,试估计全市住户的平均用电量(同一组数据用该区间的中点值作代表);
(Ⅲ)若该市计划让全市75%的住户在“阶梯电价”出台前后缴纳的电费不变,试求临界值a.