题目内容
函数f(x)=x3-3x2-9x+3,若函数g(x)=f(x)-m在x∈[-2,5]上有3个零点,则m的取值范围为
(1,8)
(1,8)
.分析:利用导数的运算法则可得f′(x),列出表格即可得出函数f(x)的单调性极值与最值,再画出函数y=f(x)与y=m的图象,即可得出m的取值范围.
解答:解:f′(x)=3x2-6x-9=3(x2-2x-3)=3(x-3)(x+1),令f′(x)=0,解得x=-2或3.
其单调性如表格:
可知:当x=3时,函数f(x)取得极小值,f(3)=33-3×32-9×3+3=-24,
又f-2)=(-2)3-3×(-2)2-9×(-2)+3=1,可知最小值为f(3),即-24.
当x=-1时,函数f(x)取得极大值,f(-1)=(-1)3-3×(-1)2-9×(-1)+3=8,
又f(5)=53-3×52-9×5+3=8,可知函数f(x)的最大值为f(5)或f(-1),即为8.
画出图象y=f(x)与y=m.
由图象可知:当m∈(1,8)时,函数y=f(x)与y=m的图象由三个交点.因此当m∈(1,8)时,函数g(x)=f(x)-m在x∈[-2,5]上有3个零点.
故答案为:(1,8).
其单调性如表格:
| x | [-2,-1) | -1 | (-1,3) | 3 | (3,5] |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
又f-2)=(-2)3-3×(-2)2-9×(-2)+3=1,可知最小值为f(3),即-24.
当x=-1时,函数f(x)取得极大值,f(-1)=(-1)3-3×(-1)2-9×(-1)+3=8,
又f(5)=53-3×52-9×5+3=8,可知函数f(x)的最大值为f(5)或f(-1),即为8.
画出图象y=f(x)与y=m.
由图象可知:当m∈(1,8)时,函数y=f(x)与y=m的图象由三个交点.因此当m∈(1,8)时,函数g(x)=f(x)-m在x∈[-2,5]上有3个零点.
故答案为:(1,8).
点评:本题考查了利用导数研究函数的单调性极值与最值及其图象、方程的解的个数转化为函数图象的交点的个数、数形结合等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关题目