题目内容

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,
(Ⅰ)求PB和平面PAD所成的角的大小;
(Ⅱ)证明AE⊥平面PCD;
(Ⅲ)求二面角A-PD-C的大小。
(Ⅰ)解:在四棱锥P-ABCD中,
因PA⊥底面ABCD,平面ABCD,
故PA⊥AB,
又AB⊥AD,PA∩AD=A,
从而AB⊥平面PAD,故PB在平面PAD内的射影为PA,
从而∠APB为PB和平面PAD所成的角,
中,AB=PA,故∠APB=45°,
所以PB和平面PAD所成的角的大小为45°.
(Ⅱ)证明:在四棱锥P-ABCD中,
因PA⊥底面ABCD,平面ABCD,
故CD⊥PA,
由条件CD⊥PC,PA∩AC=A,
∴CD⊥面PAC,
面PAC,
∴AE⊥CD,
,∠ABC=60°,可得AC=PA,
∵E是PC的中点,
∴AE⊥PC,
∴PC∩CD=C,
综上得AE⊥平面PCD.
(Ⅲ)解:过点E作EM⊥PD,垂足为M,连结AM,
由(Ⅱ)知,AE⊥平面PCD,
AM在平面PCD内的射影是EM,则AM⊥PD,
因此∠AME是二面角A-PD-C的平面角,
由已知,可得∠CAD=30°,设AC=a,可得




中,sin∠AME=
所以二面角A-PD-C的大小是
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网