题目内容
已知数列{an}满足a1=1,a2=2,| an+1+an |
| an |
| an+2-an+1 |
| an+1 |
(Ⅰ)若bn=
| an+1 |
| an |
(Ⅱ)记数列{
| an |
| an+2 |
| 1 |
| 2 |
分析:(Ⅰ)由bn=
,则bn+1-bn=2,从而可证数列{bn} 为等差数列;
(Ⅱ)先求Sn=
(1-
)<
,从而有a2-a≥
+
,故可求a的取值范围.
| an+1 |
| an |
(Ⅱ)先求Sn=
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
解答:证明:(Ⅰ)由bn=
,则bn+1-bn=2,b1=
=2,∴数列{bn} 为等差数列;
(Ⅱ)bn=2n,
=
=
(
-
),∴Sn=
(1-
)<
若对n∈N+恒有a2-a>Sn+
,∴a2-a≥
+
,解得a≥
或a≤-
| an+1 |
| an |
| a2 |
| a1 |
(Ⅱ)bn=2n,
| an |
| an+2 |
| 1 |
| bnbn+1 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 4 |
若对n∈N+恒有a2-a>Sn+
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
点评:本题主要考查了数列的通项公式的求法,并借助裂项求和,将恒成立问题转化为通过求最值,从而转化为解不等式,进而求出参数的范围.
练习册系列答案
相关题目