题目内容
已知圆O:
交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点P作直线PF的垂线交直线
于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
(1)
+y2="1" (2)因为P(1,1),所以kPF=
,所以kOQ=-2,所以直线OQ的方程为y=-2x.再由椭圆的左准线方程为x=-2,能够证明直线PQ与圆O相切.
(3) 直线PQ始终与圆O相切
(3) 直线PQ始终与圆O相切
试题分析:因为a=
又椭圆的左准线方程为x=-2,所以点Q(-2,4)(7分)
所以kPQ=-1,又kOP=1,所以kOP⊥kPQ=-1,即OP⊥PQ,
故直线PQ与圆O相切(9分)
(3)当点P在圆O上运动时,直线PQ与圆O保持相切(10分)
证明:设P(x0,y0)(x0≠±
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,注意公式的合理运用.
练习册系列答案
相关题目