题目内容
解法一:∵f()=
∴f(x)=
解法二:设t=1/x,则x=,
代入f()=
得f(t)=,
故f(x)=
(09年西城区抽样理)(14分)
已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x) = m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.
设f (x)=x2+ax,g(x)=x+b(R),l(x)= 2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.
(Ⅰ)设,若h (x)为偶函数,求;
(Ⅱ)设,若h (x)同时也是g(x)、l(x) 在R上生成的一个函数,求a+b的最小值;
(Ⅲ)试判断h(x)能否为任意的一个二次函数,并证明你的结论.
本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分。如果多做,则按所做的前两题记分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵M=,N=,且MN=。(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换作用下的像的方程。(2)(本小题满分7分)选修4-4:坐标系与参数方程在直角坐标系xOy中,直线L的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为=2sin。(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线L交于点A,B。若点P的坐标为(3,),求∣PA∣+∣PB∣。(3)(本小题满分7分)选修4-5:不等式选讲已知函数f(x)= ∣x-a∣.(Ⅰ)若不等式f(x) 3的解集为,求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围。