题目内容

已知函数存在最大值M和最小值N,则M+N的值为   
【答案】分析:令g(x)=-,则f(x)=1+g(x),f(x)的最大值M等于g(x)的最大值m加上1,f(x)的最小值N 等于g(x)的最小值n加上1,故M+N=m+1+n+1.再由g(x)是奇函数,
故m+n=0,由此求得M+N的值.
解答:解:∵函数 =1-,令g(x)=-,则有f(x)=1+g(x),且g(x)是奇函数.
故f(x)的最大值M等于g(x)的最大值m加上1,即 M=m+1. f(x)的最小值N等于g(x)的最小值n加上1,即N=n+1.
再由于g(x)是奇函数,由奇函数的性质可得 m+n=0,故M+N=m+1+n+1=2,
故答案为2.
点评:本题主要考查函数的奇偶性的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网