题目内容
已知数列{an}的前n项和为Sn,且Sn=3n2-2n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,Tn是数列{bn}的前n项和,求Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 3 | anan+1 |
分析:(Ⅰ)当n=1时,求得a1,n≥2时,an=sn-sn-1,验证后合并可得an的通项公式;
(Ⅱ)由(Ⅰ)得an=6n-5,将bn=
裂项,求和时出现正负相消,问题得到解决.
(Ⅱ)由(Ⅰ)得an=6n-5,将bn=
| 3 |
| anan+1 |
解答:解:(Ⅰ)由已知得n=1,a1=s1=1,
若n≥2,则an=sn-sn-1
=(3n2-2n)-[3(n-1)2-2(n-1)
=6n-5,
n=1时满足上式,所以an=6n-5.
(Ⅱ)由(Ⅰ)得知bn=
=
=
(
-
)
故Tn=b1+b2+…+bn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
) =
.
若n≥2,则an=sn-sn-1
=(3n2-2n)-[3(n-1)2-2(n-1)
=6n-5,
n=1时满足上式,所以an=6n-5.
(Ⅱ)由(Ⅰ)得知bn=
| 3 |
| anan+1 |
| 3 |
| (6n-5)[6(n+1)-5] |
| 1 |
| 2 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
故Tn=b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 13 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
=
| 1 |
| 2 |
| 1 |
| 6n+1 |
| 3n |
| 6n+1 |
点评:本题主要考查求数列的通项与裂项法求和,考查学生的推理与运算能力,是容易题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |