ÌâÄ¿ÄÚÈÝ
n2£¨n¡Ý4,ÇÒn¡ÊN+)¸öÕýÊýÅųÉÒ»¸önÁеÄÊýÕ󣺵Ú1ÁÐ µÚ2ÁÐ µÚ3ÁÐ ¡ µÚnÁÐ
µÚ1ÐÐ a
µÚ2ÐÐ a
µÚ3ÐÐ a
¡ ¡ ¡ ¡ ¡ ¡
µÚnÐÐ an1 an2 an3 ¡ ann
ÆäÖÐaik(1¡Üi¡Ün,1¡Ük¡Ün£¬ÇÒi,k¡ÊN+)±íʾ¸ÃÊýÕóÖÐλÓÚµÚiÐеÚkÁеÄÊý£¬ÒÑÖª¸ÃÊýÕóÿһÐеÄÊý³ÉµÈ²îÊýÁУ¬Ã¿Ò»ÁеÄÊý³É¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÇÒa23=8,a34=20.
(1)Çóa11ºÍaik;
(2)ÉèAn=a1n+a2(n-1)+a3(n-2)+¡+an1,
Ö¤Ã÷£ºµ±nΪ3µÄ±¶Êýʱ£¬(An+n)Äܱ»21Õû³ý.
(1)½â£ºÉèµÚÒ»Ðй«²îΪd,Ôòaik=£Ûa11+(k-1)d£Ý¡Á2i-1.
¡ßa23=8,a34=20.
¡à
½âµÃa11=2,d=1.
¡àa11=2,aik=(k+1)¡Á2i-1(1¡Üi¡Ün,1¡Ük¡Ün£¬ÇÒn¡Ý4,i,k,n¡ÊN +).
(2)Ö¤Ã÷£º¡ßAn=a1n+a2(n-1)+a3(n-2)+¡+an1
=(n+1)+n¡Á2+(n-1)¡Á22+¡+2¡Á2n-1,¢Ù
¡à2An=(n+1)¡Á2+n¡Á22+(n-1)¡Á23+¡+3¡Á2n-1+2¡Á2n,¢Ú
¢Ú-¢Ù,µÃAn=2+22+23+¡+2n-1+2¡Á2n-(n+1)
=2n-2+2¡Á2n-(n+1)
=3¡Á(2n-1)-n.
¡àAn+n=3¡Á(2n-1).
ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£ºµ±nΪ3µÄ±¶Êýʱ£¬£¨An+n£©Äܱ»21Õû³ý.
Éèn=
A
£¨1£©µ±m=2ʱ£¬A6+6=3¡Á(26-1)=21¡Á9,Äܱ»21Õû³ý.¡àµ±m=2ʱ£¬½áÂÛ³ÉÁ¢.
£¨2£©¼ÙÉèµ±m=k(k¡Ý2)ʱ£¬½áÂÛ³ÉÁ¢.
¼´A3k+3k=3¡Á(23k-1)Äܱ»21Õû³ý.
µ±m=k+1ʱ,
A3(k+1)+3(k+1)=3(23(k+1)-1)=3(23k¡Á8-1)
=3(23k+7¡Á23k-1)
=3(23k-1)+21¡Á23kÄܱ»21Õû³ý.
¡àµ±m=k+1ʱ£¬½áÂÛ³ÉÁ¢.
ÓÉ£¨1£©£¨2£©¿ÉÖª£¬µ±nΪ3µÄ±¶Êýʱ£¬An+n,Äܱ»21Õû³ý.