题目内容
设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通公式;
(Ⅱ)若bn=(n+1)an,求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通公式;
(Ⅱ)若bn=(n+1)an,求数列{bn}的前n项和Tn.
(I)在数列{an}中,前n项和为Sn,且点(an+1,Sn)在直线2x+y-2=0上;
所以,2an+1+Sn-2=0,则
,
(*),又∵2a2+s1-2=0,∴a2=
,∴
=
满足关系式(*),
∴数列{an}的通公式为:an=(
)n-1;
(II)由(I)知,bn=(n+1)(
)n-1,数列{bn}的前n项和Tn有:
Tn=2×
+3×
+4×
+…+(n+1)
①;
∴
Tn=2×
+3×
+4×
+…+(n+1)
②;
①-②,得
Tn=2×
+
+
+
+…+
-(n+1)
=1+
-
=3-
;
∴Tn=6-
.
所以,2an+1+Sn-2=0,则
|
|
| 1 |
| 2 |
| a2 |
| a1 |
| 1 |
| 2 |
∴数列{an}的通公式为:an=(
| 1 |
| 2 |
(II)由(I)知,bn=(n+1)(
| 1 |
| 2 |
Tn=2×
| 1 |
| 20 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
∴
| 1 |
| 2 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
①-②,得
| 1 |
| 2 |
| 1 |
| 20 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
=1+
1×(1-
| ||
1-
|
| n+1 |
| 2n |
| n+3 |
| 2n |
∴Tn=6-
| n+3 |
| 2n-1 |
练习册系列答案
相关题目