题目内容

设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(Ⅰ)求数列{an}的通公式;
(Ⅱ)若bn=(n+1)an,求数列{bn}的前n项和Tn
(I)在数列{an}中,前n项和为Sn,且点(an+1,Sn)在直线2x+y-2=0上;
所以,2an+1+Sn-2=0,则
2an+1+Sn-2=0
2an+Sn-1-2=0(n≥2)
?2an+1=an(n≥2)

an+1
an
=
1
2
(n≥2)
(*),又∵2a2+s1-2=0,∴a2=
1
2
,∴
a2
a1
=
1
2
满足关系式(*),
∴数列{an}的通公式为:an=(
1
2
)n-1

(II)由(I)知,bn=(n+1)(
1
2
)n-1
,数列{bn}的前n项和Tn有:
Tn=2×
1
20
+3×
1
21
+4×
1
22
+…+(n+1)
1
2n-1
①;
1
2
Tn=2×
1
21
+3×
1
22
+4×
1
23
+…+(n+1)
1
2n
②;
①-②,得
1
2
Tn=2×
1
20
+
1
21
+
1
22
+
1
23
+…+
1
2n-1
-(n+1)
1
2n

=1+
1×(1- 
1
2n
1-
1
2
-
n+1
2n
=3-
n+3
2n

∴Tn=6-
n+3
2n-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网