题目内容
19.已知sin($\frac{π}{3}$-α)=$\frac{1}{2}$,求cos2(α+$\frac{π}{3}$)•sin($\frac{2π}{3}$+α)的值.分析 利用已知条件求出α的值,代入求解即可.
解答 解:sin($\frac{π}{3}$-α)=$\frac{1}{2}$,可得$\frac{π}{3}$-α=2k$π+\frac{π}{6}$,或$\frac{π}{3}$-α=2k$π+\frac{5π}{6}$解得α=2k$π+\frac{π}{6}$,或α=2kπ-$\frac{π}{2}$,k∈Z.
当α=2k$π+\frac{π}{6}$时,cos2(α+$\frac{π}{3}$)•sin($\frac{2π}{3}$+α)=cos2(α+$\frac{π}{3}$)•sin($\frac{π}{3}$-α)=$\frac{1}{2}$cos2(2kπ+$\frac{π}{2}$)=$\frac{1}{2}$.
当α=2kπ-$\frac{π}{2}$时,cos2(α+$\frac{π}{3}$)•sin($\frac{2π}{3}$+α)=cos2(α+$\frac{π}{3}$)•sin($\frac{π}{3}$-α)=$\frac{1}{2}$cos2(2kπ-$\frac{π}{6}$)=$\frac{3}{8}$.
点评 本题考查三角函数的化简求值,考查计算能力.
练习册系列答案
相关题目
10.已知奇函数f(x)为定义域在R上的可导函数,f(1)=0,当x>0时,xf′(x)-f(x)<0,则x2f(x)>0的解集是( )
| A. | (-∞,-1)∪(1,+∞) | B. | (-∞,-1)∪(0,1) | C. | (-1,0)∪(0,1) | D. | (-1,0)∪(1,+∞) |
8.已知抛物线y2=12x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线的一个交点的横坐标为12,则双曲线的离心率等于( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{2}$ |