题目内容
已知△ABC中,a,b,c分别是角A,B,C的对边,cosA=
(1)求sin(2A+
);
(2)若a=4,
=
,求b,c及△ABC的面积S.
| 1 |
| 3 |
(1)求sin(2A+
| π |
| 6 |
(2)若a=4,
| sinB |
| sinC |
| 1 |
| 3 |
分析:(1)利用同角三角函数的基本关系求得 sinA 的值,利用二倍角公式求得sin2A,再利用两角和差的正弦公式求得sin(2A+
)的值.
(2)由条件里哦也难怪正弦定理可得 c=3b,再由余弦定理求得b、c的值,从而求得△ABC的面积S=
•bc•sinA 的值.
| π |
| 6 |
(2)由条件里哦也难怪正弦定理可得 c=3b,再由余弦定理求得b、c的值,从而求得△ABC的面积S=
| 1 |
| 2 |
解答:解:(1)△ABC中,∵cosA=
,∴sinA=
,∴sin2A=2sinAcosA=
,cos2A=2cos2A-1=-
.
∴sin(2A+
)=sin2Acos
+cos2Asin
=
.
(2)若a=4,
=
,则由正弦定理可得
=
,∴c=3b.
再由余弦定理可得 a2=16=b2+c2-2bc•cosA=b2+9b2-2b2=8b2,解得b=
,∴c=3
,
故△ABC的面积S=
•bc•sinA=2
.
| 1 |
| 3 |
2
| ||
| 3 |
4
| ||
| 9 |
| 7 |
| 9 |
∴sin(2A+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
4
| ||
| 9 |
(2)若a=4,
| sinB |
| sinC |
| 1 |
| 3 |
| b |
| c |
| 1 |
| 3 |
再由余弦定理可得 a2=16=b2+c2-2bc•cosA=b2+9b2-2b2=8b2,解得b=
| 2 |
| 2 |
故△ABC的面积S=
| 1 |
| 2 |
| 2 |
点评:本题主要考查两角和差的正弦公式的应用,同角三角函数的基本关系,以及正弦定理、余弦定理、二倍角公式的应用,属于中档题.
练习册系列答案
相关题目