题目内容
已知函数f(x)=2sin(x+
)cos(x+
)+2
cos2(x+
)-
,α为常数.
(Ⅰ)求函数f(x)的周期;
(Ⅱ)若0≤α≤π时,求使函数f(x)为偶函数的α值.
解:(Ⅰ)f(x)=sin(2x+α)+
[cos(2x+α)+1]-
=sin(2x+α)+
cos(2x+α)
=2sin(2x+α+
)
∴f(x)的周期T=
=π
(Ⅱ)要使函数f(x)为偶函数,
只需α+
=kπ+
,(k∈Z)
即α=kπ+
,(k∈Z)
因为0≤α≤π,
所以α=
.
分析:(Ⅰ)f(x)=sin(2x+α)+
[cos(2x+α)+1]-
=2 sin(2x+α+
),由此能求出f(x)的周期.
(Ⅱ)要使函数f(x)为偶函数,只需α+
=kπ+
,(k∈Z)由此能求出α.
点评:本题考查三角函数的综合运用,解题时要认真审题,仔细解答,注意三角函数的恒等变换.
=sin(2x+α)+
=2sin(2x+α+
∴f(x)的周期T=
(Ⅱ)要使函数f(x)为偶函数,
只需α+
即α=kπ+
因为0≤α≤π,
所以α=
分析:(Ⅰ)f(x)=sin(2x+α)+
(Ⅱ)要使函数f(x)为偶函数,只需α+
点评:本题考查三角函数的综合运用,解题时要认真审题,仔细解答,注意三角函数的恒等变换.
练习册系列答案
相关题目