题目内容

(本小题满分12分)

在边长为2的正方体中,EBC的中点,F的中点

(1)求证:CF∥平面

(2)求二面角的平面角的余弦值.

 

【答案】

(1)根据线面平行的判定定理,结合CF∥OE ,来得到证明。

(2)

【解析】

试题分析:解:(Ⅰ)取A’D的中点O,连接OF

∵点F为DD’的中点;

∴OF∥A’D’且OF=A’D’;

∴OF∥AD且OF=AD;                 2分

∵点E为BC的中点

∴EC∥AD且EC=AD;

∴OF∥EC且OF=EC;

∴四边形OBCF为平行四边形            .3分

∴CF∥OE

又FC面A’DE且OE面A’DE

∴CF∥面A’DE                       .6分

(Ⅱ)取AD的中点M,连接ME

过点M作MH⊥A’D,垂足为H点,连接HE

∵AB∥ME,又AB⊥面ADD’A’

∴ME⊥面ADD’A’

∵A’D面ADD’A’

∴ME⊥A’D

又ME⊥A’D,ME∩MH = M

∴A’D⊥面MHE

∵HE面MHE

∴A’D⊥HE

∴∠MHE是二面角E-A’D-A的平面角            .9分

在Rt△MHD中, sin∠A’DA =

∴MH =" sin" 45°=

在Rt△MHD中,tan∠MHE =

∴sin∠MHE =                      .12分

考点:空间中点线面的位置关系

点评:解决俄ud关键是对于线面平行的判定定理的运用,以及二面角的求解,属于基础题。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网