题目内容
已知数列{an}满足:{| an |
| n |
| n+2 |
| n |
(1)求数列{an}的通项公式an;
(2)设bn=
| 1 | |||
|
| n |
分析:(1)由于{
}是公差为1的等差数列,可得
-
=1,又an+1=
an+1,化简可求数列{an}的通项公式an;
(2)bn=
=
=
<
=2(
-
),从而可利用叠加法求解可得.
| an |
| n |
| an+1 |
| n+1 |
| an |
| n |
| n+2 |
| n |
(2)bn=
| 1 | |||
|
| 1 | ||
|
| 2 | ||
2
|
| 2 | ||||
|
| n |
| n-1 |
解答:解:(1)∵{
}是公差为1的等差数列,∴
-
=1,∵an+1=
an+1,∴an=n2;
(2)bn=
=
=
<
=2(
-
),∴b1+b2+…+bn<=2(1+
-1+
-
+…+
-
)<2
-1.,
| an |
| n |
| an+1 |
| n+1 |
| an |
| n |
| n+2 |
| n |
(2)bn=
| 1 | |||
|
| 1 | ||
|
| 2 | ||
2
|
| 2 | ||||
|
| n |
| n-1 |
| 2 |
| 3 |
| 2 |
| n |
| n-1 |
| n |
点评:本题主要考查数列通项公式的求解,考查放缩法及叠加法求和,属于基础题.
练习册系列答案
相关题目