题目内容
已知O、N、P在△ABC所在的平面内,且|
|=|
|=|
|,
•
=
•
=
•
,
+
+
=
,则点O、P、N依次是△ABC的( )
| OA |
| OB |
| OC |
| PA |
| PB |
| PB |
| PC |
| PC |
| PA |
| NA |
| NB |
| NC |
| 0 |
分析:将条件分别化简,然后分别根据外心,重心,垂心和内心的定义,判断结论.
解答:
解:因为|
|=|
|=|
|,所以0到顶点A,B,C的距离相等,所以O为△ABC的外心.
由
•
=
•
=
•
,得(
-
)•
=0,即
•
=0,所以AC⊥PB.
同理可证AB⊥PC,所以P为△ABC的垂心.
若
+
+
=
,则
+
=-
,取AB的中点E,则
+
=2
=
所以2|NE|=|CN|,
所以N是△ABC的重心.
故选B.
| OA |
| OB |
| OC |
由
| PA |
| PB |
| PB |
| PC |
| PC |
| PA |
| PA |
| PC |
| PB |
| AC |
| PB |
同理可证AB⊥PC,所以P为△ABC的垂心.
若
| NA |
| NB |
| NC |
| 0 |
| NA |
| NB |
| NC |
| NA |
| NB |
| NE |
| CN |
所以N是△ABC的重心.
故选B.
点评:本题主要考查三角形外心,重心,垂心的判断,要求熟练掌握外心,重心,垂心和内心的判断条件.
练习册系列答案
相关题目