题目内容
已知x>0,y>0,且
,若x+2y>m2+2m恒成立,则实数m的取值范围是________.
-4<m<2
分析:先把x+2y转化为(x+2y)
展开后利用基本不等式求得其最小值,然后根据x+2y>m2+2m求得m2+2m<8,进而求得m的范围.
解答:∵
,∴x+2y=(x+2y)
=4+
+
≥4+2
=8
∵x+2y>m2+2m恒成立,
∴m2+2m<8,求得-4<m<2
故答案为:-4<m<2.
点评:本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力.
分析:先把x+2y转化为(x+2y)
解答:∵
∵x+2y>m2+2m恒成立,
∴m2+2m<8,求得-4<m<2
故答案为:-4<m<2.
点评:本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关题目
(2007
宁夏,7)已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则[
]|
A .0 |
B .1 |
C .2 |
D .4 |