题目内容

已知x>0,y>0,且数学公式,若x+2y>m2+2m恒成立,则实数m的取值范围是________.

-4<m<2
分析:先把x+2y转化为(x+2y)展开后利用基本不等式求得其最小值,然后根据x+2y>m2+2m求得m2+2m<8,进而求得m的范围.
解答:∵,∴x+2y=(x+2y)=4++≥4+2=8
∵x+2y>m2+2m恒成立,
∴m2+2m<8,求得-4<m<2
故答案为:-4<m<2.
点评:本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网