题目内容

若偶函数y=loga|x-b|在(-∞,0)上递增,则a,b满足的条件是(  )
A.0<a<1,b=0B.a>1,b∈RC.a>1,b>0D.a>1,b=0
∵y=loga|x-b|是偶函数
∴loga|x-b|=loga|-x-b|
∴|x-b|=|-x-b|
∴x2-2bx+b2=x2+2bx+b2
整理得4bx=0,由于x不恒为0,故b=0
由此函数变为y=loga|x|
当x∈(-∞,0)时,由于内层函数u=|x|是一个减函数,
又偶函数y=loga|x-b|在区间(-∞,0)上递增
故外层函数y=logau是减函数,故可得0<a<1
综上得0<a<1,b=0
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网