题目内容
已知函数f(x)=ax2+ln(x+1).
(Ⅰ)当a=-
时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(Ⅲ)求证:(1+
)(1+
)(1+
)•…•[1+
]<e(其中n∈N*,e是自然对数).
(Ⅰ)当a=-
| 1 |
| 4 |
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(Ⅲ)求证:(1+
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
分析:(Ⅰ)把a=-
代入函数f(x),再对其进行求导利用导数研究函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,只要求出ax2+ln(x+1)-x的最小值即可,构造新的函数,利用导数研究其最值问题;
(Ⅲ)由题设(Ⅱ)可知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用此不等式对所要证明的不等式进行放缩,从而进行证明;
| 1 |
| 4 |
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,只要求出ax2+ln(x+1)-x的最小值即可,构造新的函数,利用导数研究其最值问题;
(Ⅲ)由题设(Ⅱ)可知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用此不等式对所要证明的不等式进行放缩,从而进行证明;
解答:解:(Ⅰ)当a=-
时,f(x)=-
x2+ln(x+1)(x>-1),
f′(x)=-
x+
=-
(x>-1),
由f'(x)>0,解得-1<x<1,由f'(x)<0,解得x>1.
故函数f(x)的单调递增区间为(-1,1),单调递减区间为(1,+∞).
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可.
由g′(x)=2ax+
-1=
,
(ⅰ)当a=0时,g′(x)=
,
当x>0时,g'(x)<0,函数g(x)在(0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
(ⅱ)当a>0时,由g′(x)=
=0,因x∈[0,+∞),所以x=
-1,
①若
-1<0,即a>
时,在区间(0,+∞)上,g'(x)>0,
则函数g(x)在(0,+∞)上单调递增,
g(x)在[0,+∞)上无最大值,此时不满足条件;
②若
-1≥0,即0<a≤
时,函数g(x)在(0,
-1)上单调递减,在区间(
-1,+∞)上单调递增,
同样g(x)在[0,+∞)上无最大值,不满足条件.
(ⅲ)当a<0时,g′(x)=
,
∵x∈[0,+∞),∴2ax+(2a-1)<0,
∴g'(x)≤0,故函数g(x)在[0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].
(Ⅲ)据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,
又
=2(
-
),
∵ln{(1+
)(1+
)(1+
)•…•[1+
]}
=ln(1+
)+ln(1+
)+ln(1+
)+…+ln[1+
]<
+
+
+…+
=2[(
-
)+(
-
)+(
-
)+…+(
-
)]
=2[(
-
)]<1,
∴(1+
)(1+
)(1+
)•…•[1+
]<e.
| 1 |
| 4 |
| 1 |
| 4 |
f′(x)=-
| 1 |
| 2 |
| 1 |
| x+1 |
| (x+2)(x-1) |
| 2(x+1) |
由f'(x)>0,解得-1<x<1,由f'(x)<0,解得x>1.
故函数f(x)的单调递增区间为(-1,1),单调递减区间为(1,+∞).
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可.
由g′(x)=2ax+
| 1 |
| x+1 |
| x[2ax+(2a-1)] |
| x+1 |
(ⅰ)当a=0时,g′(x)=
| -x |
| x+1 |
当x>0时,g'(x)<0,函数g(x)在(0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
(ⅱ)当a>0时,由g′(x)=
| x[2ax+(2a-1)] |
| x+1 |
| 1 |
| 2a |
①若
| 1 |
| 2a |
| 1 |
| 2 |
则函数g(x)在(0,+∞)上单调递增,
g(x)在[0,+∞)上无最大值,此时不满足条件;
②若
| 1 |
| 2a |
| 1 |
| 2 |
| 1 |
| 2a |
| 1 |
| 2a |
同样g(x)在[0,+∞)上无最大值,不满足条件.
(ⅲ)当a<0时,g′(x)=
| x[2ax+(2a-1)] |
| x+1 |
∵x∈[0,+∞),∴2ax+(2a-1)<0,
∴g'(x)≤0,故函数g(x)在[0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].
(Ⅲ)据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,
又
| 2n |
| (2n-1+1)(2n+1) |
| 1 |
| 2n-1+1 |
| 1 |
| 2n+1 |
∵ln{(1+
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
=ln(1+
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
=2[(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n+1 |
=2[(
| 1 |
| 2 |
| 1 |
| 2n+1 |
∴(1+
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
点评:此题主要考查利用导数研究函数的单调性和最值问题,解题过程中多次用到了转化的思想,第二题函数的恒成立问题,第三问不等式的证明运用前面两问所证明的不等式,利用它们进行放缩证明,本题难度比较大,是一道综合题;
练习册系列答案
相关题目