题目内容

已知函数f(x)=
-x2+2x,x≤0
ln(x+1),x>0
若|f(x)|≥ax,则a的取值范围是
[-2,0]
[-2,0]
分析:①当x>0时,根据ln(x+1)>0恒成立,求得a≤0.②当x≤0时,可得x2-2x≥ax,求得a的范围.再把这两个a的取值范围取交集,可得答案.
解答:解:当x>0时,根据ln(x+1)>0恒成立,则此时a≤0.
当x≤0时,根据-x2+2x的取值为(-∞,0],|f(x)|=x2-2x≥ax,
x=0时 左边=右边,a取任意值.
x<0时,有a≥x-2,即a≥-2.
综上可得,a的取值为[-2,0],
故答案为[-2,0].
点评:本题主要考查绝对值不等式的解法,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网