题目内容
已知函数f(x)=
若|f(x)|≥ax,则a的取值范围是
|
[-2,0]
[-2,0]
.分析:①当x>0时,根据ln(x+1)>0恒成立,求得a≤0.②当x≤0时,可得x2-2x≥ax,求得a的范围.再把这两个a的取值范围取交集,可得答案.
解答:解:当x>0时,根据ln(x+1)>0恒成立,则此时a≤0.
当x≤0时,根据-x2+2x的取值为(-∞,0],|f(x)|=x2-2x≥ax,
x=0时 左边=右边,a取任意值.
x<0时,有a≥x-2,即a≥-2.
综上可得,a的取值为[-2,0],
故答案为[-2,0].
当x≤0时,根据-x2+2x的取值为(-∞,0],|f(x)|=x2-2x≥ax,
x=0时 左边=右边,a取任意值.
x<0时,有a≥x-2,即a≥-2.
综上可得,a的取值为[-2,0],
故答案为[-2,0].
点评:本题主要考查绝对值不等式的解法,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|