题目内容

(2012•自贡一模)已知数列{an}满足a1=1,an+1=
an
3an+1

(I)求数列{an}的通项公式;
(II)记Sn=a1a2+a2a3+…anan+1,求
lim
x→∞
Sn
分析:(Ⅰ) 由题意可得
1
an+1
-
1
an
=3
,结合等差数列的通项公式可求
1
an
,进而可求an
(Ⅱ)由anan+1=
1
(3n-2)(3n+1)
=(
1
3n-2
-
1
3n+1
1
3
,考虑利用裂项求和即可求Sn,从而可求极限
解答:解:(Ⅰ) 由an+1=
an
3an+1
得 
1
an+1
-
1
an
=3
(3分)
∴数列{
1
an
}是首项为1,公差为3的等差数列
1
an
=1+3(n-1)

an=
1
3n-2
(6分)
(Ⅱ)∵anan+1=
1
(3n-2)(3n+1)
=(
1
3n-2
-
1
3n+1
1
3
(9分)
Sn=
1
3
[(1-
1
4
)+(
1
4
-
1
7
)+(
1
7
-
1
10
)+…+(
1
3n-2
-
1
3n+1
)]

=
1
3
(1-
1
3n+1
)=
n
3n+1

limSn=
1
3
(12分)
点评:本题主要考查了由形如an+1=
qan
pan+q
型的递推公式,构造等差数列
1
an+1
=
1
an
+
p
q
求解通项公式,裂项求和的应用,要注意
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)
时,
1
3
不要漏掉
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网