题目内容
(2012•自贡一模)已知数列{an}满足a1=1,an+1=
(I)求数列{an}的通项公式;
(II)记Sn=a1a2+a2a3+…anan+1,求
Sn.
| an |
| 3an+1 |
(I)求数列{an}的通项公式;
(II)记Sn=a1a2+a2a3+…anan+1,求
| lim |
| x→∞ |
分析:(Ⅰ) 由题意可得
-
=3,结合等差数列的通项公式可求
,进而可求an
(Ⅱ)由anan+1=
=(
-
)×
,考虑利用裂项求和即可求Sn,从而可求极限
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(Ⅱ)由anan+1=
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
解答:解:(Ⅰ) 由an+1=
得
-
=3(3分)
∴数列{
}是首项为1,公差为3的等差数列
∴
=1+3(n-1)
即an=
(6分)
(Ⅱ)∵anan+1=
=(
-
)×
(9分)
∴Sn=
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=
(1-
)=
∴limSn=
(12分)
| an |
| 3an+1 |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
∴
| 1 |
| an |
即an=
| 1 |
| 3n-2 |
(Ⅱ)∵anan+1=
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
∴Sn=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 10 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
=
| 1 |
| 3 |
| 1 |
| 3n+1 |
| n |
| 3n+1 |
∴limSn=
| 1 |
| 3 |
点评:本题主要考查了由形如an+1=
型的递推公式,构造等差数列
=
+
求解通项公式,裂项求和的应用,要注意
=
(
-
)时,
不要漏掉
| qan |
| pan+q |
| 1 |
| an+1 |
| 1 |
| an |
| p |
| q |
| 1 |
| (3n-2)(3n+1) |
| 1 |
| 3 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
练习册系列答案
相关题目