题目内容
(2006•海淀区二模)函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③f(
)>1.
(1)求f(0)的值;
(2)求证:f(x)在R上是单调增函数;
(3)若a>b>c>0且b2=ac,求证:f(a)+f(c)>2f(b).
| 1 | 3 |
(1)求f(0)的值;
(2)求证:f(x)在R上是单调增函数;
(3)若a>b>c>0且b2=ac,求证:f(a)+f(c)>2f(b).
分析:(1)可采用赋值法,令x=0,y=2代入可求得f(0)的值;
(2)任取x1,x2∈R,且x1<x2,可令x1=
p1,x2=
p2,故p1<p2,再判断f(x1)-f(x2)的符号,从而可证其单调性;
(3)由(1)(2)可证f(b)>1,f(a)=f(b•
)=[f(b)]
,f(c)=f(b•
)=[f(b)]
,从而可证得f(a)+f(c)=[f(b)]
+[f(b)]
>2
>2
=2f(b),问题即可解决.
(2)任取x1,x2∈R,且x1<x2,可令x1=
| 1 |
| 3 |
| 1 |
| 3 |
(3)由(1)(2)可证f(b)>1,f(a)=f(b•
| a |
| b |
| a |
| b |
| c |
| b |
| c |
| b |
| a |
| b |
| c |
| b |
[f(b)]
|
[f(b)]
|
解答:解:(1)∵对任意x∈R,有f(x)>0,
∴令x=0,y=2得:f(0)=[f(0)]2⇒f(0)=1;
(2)任取x1,x2∈R,且x1<x2,则x1=
p1,x2=
p2,故p1<p2,
∵函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③f(
)>1.
∴f(x1)-f(x2)=f(
p1)-f(
p2)=[f(
)]p1-[f(
)]p2<0,
∴f(x1)<f(x2),
∴函数f(x)是R上的单调增函数.
(3)由(1)(2)知,f(b)>f(0)=1,
∴f(b)>1,
∵f(a)=f(b•
)=[f(b)]
,f(c)=f(b•
)=[f(b)]
,
∴f(a)+f(c)=[f(b)]
+[f(b)]
>2
,
而a+c>2
=2
=2b,
∴2
>2
=2f(b),
∴f(a)+f(c)>2f(b).
∴令x=0,y=2得:f(0)=[f(0)]2⇒f(0)=1;
(2)任取x1,x2∈R,且x1<x2,则x1=
| 1 |
| 3 |
| 1 |
| 3 |
∵函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③f(
| 1 |
| 3 |
∴f(x1)-f(x2)=f(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴f(x1)<f(x2),
∴函数f(x)是R上的单调增函数.
(3)由(1)(2)知,f(b)>f(0)=1,
∴f(b)>1,
∵f(a)=f(b•
| a |
| b |
| a |
| b |
| c |
| b |
| c |
| b |
∴f(a)+f(c)=[f(b)]
| a |
| b |
| c |
| b |
[f(b)]
|
而a+c>2
| ac |
| b2 |
∴2
[f(b)]
|
[f(b)]
|
∴f(a)+f(c)>2f(b).
点评:本题考查抽象函数及其应用,难点在于用单调函数的定义证明其单调递增时“任取x1,x2∈R,且x1<x2,则x1=
p1,x2=
p2”这一步的灵活理解与应用,属于难题.
| 1 |
| 3 |
| 1 |
| 3 |
练习册系列答案
相关题目