题目内容
设g(x)=px-
-2f(x),其中f(x)=lnx,且g(e)=qe-
-2.(e为自然对数的底数)
(I)求p与q的关系;
(Ⅱ)若g(x)在其定义域内为单调函数,求p的取值范围;
(Ⅲ)证明:
①f(1+x)≤x(x>-1);
②
+
+…+
<
(n∈N,n≥2).
| q |
| x |
| p |
| e |
(I)求p与q的关系;
(Ⅱ)若g(x)在其定义域内为单调函数,求p的取值范围;
(Ⅲ)证明:
①f(1+x)≤x(x>-1);
②
| ln2 |
| 22 |
| ln3 |
| 32 |
| lnn |
| n2 |
| 2n2-n-1 |
| 4(n+1) |
(I)由题意g(x)=px-
-2lnx,
又g(e)=pe-
-2,∴pe-
-2=qe-
-2,
∴(p-q)e+(p-q)
=0,∴(p-q)(e+
)=0,
而e+
≠0,∴p=q
(II)由(I)知:g(x)=px-
-2lnx,g′(x)=p+
-
=
,
令h(x)=px2-2x+p.要使g(x)在(0,+∞)为单调函数,只需h(x)在(0,+∞)满足:
h(x)≥0或h(x)≤0恒成立.
①p=0时,h(x)=-2x,∵x>0,∴h(x)<0,∴g'(x)=-
<0,
∴g(x)在(0,+∞)单调递减,∴p=0适合题意.
②当p>0时,h(x)=px2-2x+p图象为开口向上抛物线,
称轴为x=
∈(0,+∞).∴h(x)min=p-
.只需p-
≥0,即p≥1时h(x)≥0,g′(x)≥0,
∴g(x)在(0,+∞)单调递增,∴p≥1适合题意.
③当p<0时,h(x)=px2-2x+p图象为开口向下的抛物线,其对称轴为x=
∉(0,+∞),
只需h(0)≤0,即p≤0时h(0)≤(0,+∞)恒成立.
∴g′(x)<0,∴g(x)在(0,+∞)单调递减,∴p<0适合题意.
综上①②③可得,p≥1或p≤0.
(III)证明:①即证:lnx-x+1≤0(x>0),
设k(x)=lnx-x+1,则k'(x)=
-1=
.
当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;
当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;
∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0.即lnx-x+1≤0,
所以lnx≤x-1得证.
②由①知lnx≤x-1,又x>0,
∴
≤
=1-
∵n∈N*,n≥2时,令x=n2,
得
≤1-
.
∴
≤
(1-
),
∴
+
++
≤
(1-
+1-
++1-
)
=
[(n-1)]-(
+
++
)]<
[(n-1)-(
+
++
)]
=
[n-1-(
-
+
-
++
-
)]
=
[n-1-(
-
)]=
所以得证.
| q |
| x |
又g(e)=pe-
| q |
| e |
| q |
| e |
| q |
| e |
∴(p-q)e+(p-q)
| 1 |
| e |
| 1 |
| e |
而e+
| 1 |
| e |
(II)由(I)知:g(x)=px-
| p |
| x |
| p |
| x2 |
| 2 |
| x |
| px2-2x+p |
| x2 |
令h(x)=px2-2x+p.要使g(x)在(0,+∞)为单调函数,只需h(x)在(0,+∞)满足:
h(x)≥0或h(x)≤0恒成立.
①p=0时,h(x)=-2x,∵x>0,∴h(x)<0,∴g'(x)=-
| 2x |
| x2 |
∴g(x)在(0,+∞)单调递减,∴p=0适合题意.
②当p>0时,h(x)=px2-2x+p图象为开口向上抛物线,
称轴为x=
| 1 |
| p |
| 1 |
| p |
| 1 |
| p |
∴g(x)在(0,+∞)单调递增,∴p≥1适合题意.
③当p<0时,h(x)=px2-2x+p图象为开口向下的抛物线,其对称轴为x=
| 1 |
| p |
只需h(0)≤0,即p≤0时h(0)≤(0,+∞)恒成立.
∴g′(x)<0,∴g(x)在(0,+∞)单调递减,∴p<0适合题意.
综上①②③可得,p≥1或p≤0.
(III)证明:①即证:lnx-x+1≤0(x>0),
设k(x)=lnx-x+1,则k'(x)=
| 1 |
| x |
| 1-x |
| x |
当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;
当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;
∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0.即lnx-x+1≤0,
所以lnx≤x-1得证.
②由①知lnx≤x-1,又x>0,
∴
| lnx |
| x |
| x-1 |
| x |
| 1 |
| x |
得
| lnn2 |
| n2 |
| 1 |
| n2 |
∴
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| n2 |
∴
| ln2 |
| 22 |
| ln3 |
| 32 |
| lnn |
| 22 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 2n2-n-1 |
| 4(n+1) |
所以得证.
练习册系列答案
相关题目