题目内容
已知函数f(x)=
,则f(
)•f(
)•…•f(
)=
| x+1 |
| 4-2x |
| 1 |
| 2012 |
| 2 |
| 2012 |
| 2011 |
| 2012 |
(
)2011
| 1 |
| 2 |
(
)2011
.| 1 |
| 2 |
分析:通过求解可得f(x)•f(1-x)=
•
=
•
=
,利用此结论可求得答案.
| x+1 |
| 4-2x |
| (1-x)+1 |
| 4-2(1-x) |
| x+1 |
| 4-2x |
| 2-x |
| 2+2x |
| 1 |
| 4 |
解答:解:f(x)•f(1-x)=
•
=
•
=
,
所以f(
)•f(
)•…•f(
)
=[f(
)•f(
)][•f(
)f(
)]…[f(
)f(
)]f(
)
=(
)1005•
=(
)2011,
故答案为:(
)2011.
| x+1 |
| 4-2x |
| (1-x)+1 |
| 4-2(1-x) |
| x+1 |
| 4-2x |
| 2-x |
| 2+2x |
| 1 |
| 4 |
所以f(
| 1 |
| 2012 |
| 2 |
| 2012 |
| 2011 |
| 2012 |
=[f(
| 1 |
| 2012 |
| 2011 |
| 2012 |
| 2 |
| 2012 |
| 2010 |
| 2012 |
| 1005 |
| 2012 |
| 1007 |
| 2012 |
| 1006 |
| 2012 |
=(
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:(
| 1 |
| 2 |
点评:本题考查函数值的求解,考查学生分析问题的能力,属中档题.
练习册系列答案
相关题目