题目内容
12.已知数列{an}满足${a_1}=\frac{1}{4}$,${a_{n+1}}=\frac{1}{{4({1-{a_n}})}}$.(1)设${b_n}=\frac{2}{{2{a_n}-1}}$,求证:数列{bn}为等差数列;
(2)求证:$\frac{a_2}{a_1}+\frac{a_3}{a_2}+…+\frac{{{a_{n+1}}}}{a_n}<n+\frac{3}{4}$.
分析 (1)由${a_{n+1}}=\frac{1}{{4({1-{a_n}})}}$.${b_n}=\frac{2}{{2{a_n}-1}}$,可得bn+1-bn,再利用等差数列的定义即可判断出;
(2)由(1)知bn=-2n-2,可得$\frac{2}{{2{a_n}-1}}=-2n-2$,解得an,计算出$\frac{{a}_{k+1}}{{a}_{k}}$,即可证明.
解答 (1)证明:${a_{n+1}}=\frac{1}{{4({1-{a_n}})}}$,
∴${b_{n+1}}=\frac{2}{{2{a_{n+1}}-1}}=\frac{2}{{\frac{2}{{4({1-{a_n}})}}-1}}=\frac{2}{{2{a_n}-1}}-2=b{\;}_n-2$,
∴bn+1-bn=-2,
又${a_1}=\frac{1}{4}$,∴${b_1}=\frac{2}{{2{a_1}-1}}=-4$,
∴数列{bn}为等差数列,且首项为-4,公差为-2.
(2)由(1)知bn=-4+(n-1)(-2)=-2n-2,
即$\frac{2}{{2{a_n}-1}}=-2n-2$,
∴${a_n}=\frac{1}{2}-\frac{1}{2n+2}=\frac{n}{{2({n+1})}}$,
由于$\frac{{{a_{k+1}}}}{a_k}=\frac{k+1}{{2({k+2})}}•\frac{{2({k+1})}}{k}=\frac{{{{({k+1})}^2}}}{{k({k+2})}}=1+\frac{1}{{k({k+2})}}=1+\frac{1}{2}({\frac{1}{k}-\frac{1}{k+2}})$,
∴$\frac{a_2}{a_1}+\frac{a_3}{a_2}+…+\frac{{{a_{n+1}}}}{a_n}=n+\frac{1}{2}({1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+…+\frac{1}{n}-\frac{1}{n+2}})$
=$n+\frac{1}{2}({1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}})<n+\frac{3}{4}$.
点评 本题考查了等差数列的通项公式、递推式的应用、“裂项求和”方法、不等式的性质、“放缩法”,考查了推理能力与计算能力,属于中档题.
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\sqrt{3}$ | C. | $\frac{2}{3}$或3 | D. | $\frac{\sqrt{6}}{2}$或$\sqrt{3}$ |
| A. | $\frac{{4\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{6}$ | B. | $\frac{{8\sqrt{3}}}{3}+\frac{{\sqrt{3}π}}{3}$ | C. | $\frac{{4\sqrt{3}}}{3}+\frac{{4\sqrt{3}π}}{3}$ | D. | $4\sqrt{3}+\sqrt{3}π$ |