题目内容

已知数列{an}满足
an+1
n
=
an
n+1
+
2
n(n+1)
a1=1
,数列{bn}满足bn=nan
(1)证明数列{bn}是等差数列;(2)求数列{an}的通项公式;
(3)求数列{2nbn}的前n项的和Sn
分析:(1)对
an+1
n
=
an
n+1
+
2
n(n+1)
两边同乘以n(n+1),得(n+1)an+1=nan+2,从而可得bn+1=bn+2,由等等差数列的定义可作出判断;
(2)由(1)可求得bn,从而可求得an
(3)表示出2nbn,利用错位相减法可求得Sn
解答:(1)证明:∵
an+1
n
=
an
n+1
+
2
n(n+1)

∴(n+1)an+1=nan+2,
∴bn+1=bn+2,即bn+1-bn=2,
故数列{bn}是以b1=a1=1为首项,2为公差的等差数列;
(2)由(1)得bn=1+2(n-1)=2n-1,
nan=2n-1∴an=
2n-1
n

(3)由(2)bn=2n-1,
2nbn=(2n-1)2n
Sn=1•2+3•22+5•23+…+(2n-3)•2n-1+(2n-1)2n
2Sn=1•22+3•23+5•24+…+(2n-3)•2n+(2n-1)2n+1
两式相减,得(1-2)Sn=2+2(22+23+…+2n)-(2n-1)2n+1
(1-2)Sn=2(2+22+23+…+2n)-2-(2n-1)2n+1=2×
2(1-2n)
1-2
-2-(2n-1)•2n+1=(1-2n)•2n+1-6,
Sn=(2n-1)2n+1+6
点评:本题考查由数列递推式求数列通项、等差关系的确定及数列求和,错位相减法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网