题目内容
已知数列{an}满足
=
+
,a1=1,数列{bn}满足bn=nan
(1)证明数列{bn}是等差数列;(2)求数列{an}的通项公式;
(3)求数列{2nbn}的前n项的和Sn.
| an+1 |
| n |
| an |
| n+1 |
| 2 |
| n(n+1) |
(1)证明数列{bn}是等差数列;(2)求数列{an}的通项公式;
(3)求数列{2nbn}的前n项的和Sn.
分析:(1)对
=
+
两边同乘以n(n+1),得(n+1)an+1=nan+2,从而可得bn+1=bn+2,由等等差数列的定义可作出判断;
(2)由(1)可求得bn,从而可求得an;
(3)表示出2nbn,利用错位相减法可求得Sn.
| an+1 |
| n |
| an |
| n+1 |
| 2 |
| n(n+1) |
(2)由(1)可求得bn,从而可求得an;
(3)表示出2nbn,利用错位相减法可求得Sn.
解答:(1)证明:∵
=
+
,
∴(n+1)an+1=nan+2,
∴bn+1=bn+2,即bn+1-bn=2,
故数列{bn}是以b1=a1=1为首项,2为公差的等差数列;
(2)由(1)得bn=1+2(n-1)=2n-1,
∴nan=2n-1∴an=
;
(3)由(2)bn=2n-1,
∴2nbn=(2n-1)2n,
∴Sn=1•2+3•22+5•23+…+(2n-3)•2n-1+(2n-1)2n,
∴2Sn=1•22+3•23+5•24+…+(2n-3)•2n+(2n-1)2n+1,
两式相减,得(1-2)Sn=2+2(22+23+…+2n)-(2n-1)2n+1,
(1-2)Sn=2(2+22+23+…+2n)-2-(2n-1)2n+1=2×
-2-(2n-1)•2n+1=(1-2n)•2n+1-6,
∴Sn=(2n-1)2n+1+6.
| an+1 |
| n |
| an |
| n+1 |
| 2 |
| n(n+1) |
∴(n+1)an+1=nan+2,
∴bn+1=bn+2,即bn+1-bn=2,
故数列{bn}是以b1=a1=1为首项,2为公差的等差数列;
(2)由(1)得bn=1+2(n-1)=2n-1,
∴nan=2n-1∴an=
| 2n-1 |
| n |
(3)由(2)bn=2n-1,
∴2nbn=(2n-1)2n,
∴Sn=1•2+3•22+5•23+…+(2n-3)•2n-1+(2n-1)2n,
∴2Sn=1•22+3•23+5•24+…+(2n-3)•2n+(2n-1)2n+1,
两式相减,得(1-2)Sn=2+2(22+23+…+2n)-(2n-1)2n+1,
(1-2)Sn=2(2+22+23+…+2n)-2-(2n-1)2n+1=2×
| 2(1-2n) |
| 1-2 |
∴Sn=(2n-1)2n+1+6.
点评:本题考查由数列递推式求数列通项、等差关系的确定及数列求和,错位相减法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目