题目内容
(I)求a43;
(Ⅱ)写出aij;
(Ⅲ)设这个数阵共有n行,求数阵中所有数之和.
分析:(I)求出第一列的公差,理由等差数列的通项公式求a43;
(Ⅱ)利用等比数列的性质写出aij;
(Ⅲ)利用错误相减法求出数阵中所有数之和.
(Ⅱ)利用等比数列的性质写出aij;
(Ⅲ)利用错误相减法求出数阵中所有数之和.
解答::(I)题意知,第一列公差为d=
-
=
,所以a41=
+(4-1)×
=1,
由第3行得公比q=
,所以a43=1×(
)2=
.
(Ⅱ)aij=
(
)j-1.
(Ⅲ)设数阵中第n行的所有数字之和为An,
则An=
(1+
+
+…+
)=
•
=
-
×
.
所求之和S=A1+A2+…+An=
(1+2+…+n)-
(1×
+2×
+…+n•
).
设Tn=1×
+2×
+…+n•
,
则
Tn=1×
+2×
+…+n•
,
两式相减得
Tn=
+
+…+
-
=
-
=1-
-
.
所以S=
-1+
+
=
+
.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
由第3行得公比q=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
(Ⅱ)aij=
| i |
| 4 |
| 1 |
| 2 |
(Ⅲ)设数阵中第n行的所有数字之和为An,
则An=
| n |
| 4 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n |
| 4 |
1-(
| ||
1-
|
| n |
| 2 |
| 1 |
| 2 |
| n |
| 2n |
所求之和S=A1+A2+…+An=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
设Tn=1×
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
则
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n+1 |
两式相减得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2n+1 |
| ||||
1-
|
| n |
| 2n+1 |
| 1 |
| 2n |
| n |
| 2n+1 |
所以S=
| n(n+1) |
| 4 |
| 1 |
| 2n |
| n |
| 2n+1 |
| n2+n-4 |
| 4 |
| n+2 |
| 2n+1 |
点评:本题主要考查了等差数列和等比数列的综合运用,运算量较大,综合性较强,考查学生的运算能力.
练习册系列答案
相关题目