题目内容
已知函数f(x)=
(1)当x≥1时,证明:不等式f(x)≤x+lnx恒成立.
(2)若数列{an}满足a1=
,an+1=f(an),bn=
-1,n∈N+,证明数列{bn}是等比数列,并求出数列{bn}、{an}的通项公式;
(3)在(2)的条件下,若cn=an•an+1•bn+1(n∈N+),证明:c1+c2+c3+…cn<
| 2x |
| x+1 |
(1)当x≥1时,证明:不等式f(x)≤x+lnx恒成立.
(2)若数列{an}满足a1=
| 2 |
| 3 |
| 1 |
| an |
(3)在(2)的条件下,若cn=an•an+1•bn+1(n∈N+),证明:c1+c2+c3+…cn<
| 1 |
| 3 |
(1)∵x≥1得f(x)-x=
-x=
=
≤0,
而x≥1时,lnx≥0
∵x≥1时,f(x)-x≤lnx
∴当x≥1时,f(x)≤x+lnx恒成立
(2)a1=
,an+1=f(an),bn=
-1,n∈N+∴an+1=
得
=
+
∴a1=
,an+1=f(an),bn=
-1,n∈N+
∴
=
=
=
=
(n∈N+)
又b1=
-1=
∴{bn}是首项为
,公比为
的等比数列,其通项公式为bn=
又a1=
,an+1=f(an),bn=
-1,n∈N+
∴an=
=
=
(n∈N+)
(3)cn=an•an+1•bn+1=
×
×
=
×
=
-
∴c1+c2+c3+…+cn=(
-
)+(
-
)+…+(
-
)=
-
<
| 2x |
| x+1 |
| 2x-x2-x |
| x+1 |
| -x(x-1) |
| x+1 |
而x≥1时,lnx≥0
∵x≥1时,f(x)-x≤lnx
∴当x≥1时,f(x)≤x+lnx恒成立
(2)a1=
| 2 |
| 3 |
| 1 |
| an |
| 2an |
| an+1 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| 2an |
∴a1=
| 2 |
| 3 |
| 1 |
| an |
∴
| bn+1 |
| bn |
| ||
|
| ||||
|
| ||||
|
| 1 |
| 2 |
又b1=
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
又a1=
| 2 |
| 3 |
| 1 |
| an |
∴an=
| 1 |
| bn+1 |
| 1 | ||
|
| 2n |
| 2n+1 |
(3)cn=an•an+1•bn+1=
| 2n |
| 2n+1 |
| 2n+1 |
| 2n+1+1 |
| 1 |
| 2n+1 |
| 2n |
| 2n+1 |
| 1 |
| 2n+1+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
∴c1+c2+c3+…+cn=(
| 1 |
| 21+1 |
| 1 |
| 22+1 |
| 1 |
| 22+1 |
| 1 |
| 23+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
| 1 |
| 3 |
| 1 |
| 2n+1+1 |
| 1 |
| 3 |
练习册系列答案
相关题目