题目内容

4.已知函数$f(x)=\frac{1}{2}ln(x+\frac{1}{4})$,$g(x)=ln(2x-\frac{1}{2}+t)$,若f(x)≤g(x)在区间[0,1]上恒成立,则(  )
A.实数t有最小值1B.实数t有最大值1C.实数t有最小值$\frac{1}{2}$D.实数t有最大值$\frac{1}{2}$

分析 若对任意的x∈[0,1],有f(x)≤g(x)恒成立,则g(x)-f(x)≥0恒成立,构造函数h(x)=g(x)-f(x),并将恒成立问题转化为最值问题,由题意求出t的范围,可得原函数的导函数在[0,1]上单调递增,求其最小值,由最小值大于等于0求得t有最小值1.

解答 解:若对任意的x∈[0,1],有f(x)≤g(x)恒成立,
则对任意的x∈[0,1],有g(x)-f(x)≥0恒成立,
令h(x)=g(x)-f(x)=$ln(2x-\frac{1}{2}+t)-\frac{1}{2}ln(x+\frac{1}{4})$,x∈[0,1],
则h′(x)=$\frac{2}{2x-\frac{1}{2}+t}-\frac{1}{2x+\frac{1}{2}}$=$\frac{2x+\frac{3}{2}+t}{(2x-\frac{1}{2}+t)(2x+\frac{1}{2})}$,x>max{$-\frac{1}{4}$,$\frac{1}{2}-t$}.
由题意可得$\frac{1}{2}-t≤0$,即t$≥\frac{1}{2}$,再由h′(x)=0,可得x=$-\frac{3}{4}-\frac{t}{2}$≤-1,
则h(x)在[0,1]上单调递增,$h(x)_{min}=h(0)=ln(-\frac{1}{2}+t)-\frac{1}{2}ln\frac{1}{4}≥0$,解得t≥1.
∴实数t有最小值1.
故选:A.

点评 本题考查的知识点是利用导数求闭区间上的函数最值,利用导数研究函数的单调性,熟练掌握导数符号与原函数单调性的关系,是解答的关键,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网