题目内容
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=
(n∈N*)
| n(3n+1) |
| 2 |
证明:①n=1时,左边=2,右边=2,等式成立;
②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=
则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=
+3k+2=
故n=k+1时,等式成立
由①②可知:(n+1)+(n+2)+…+(n+n)=
(n∈N*)成立
②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)=
| k(3k+1) |
| 2 |
则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=
| k(3k+1) |
| 2 |
| (k+1)(3k+4) |
| 2 |
故n=k+1时,等式成立
由①②可知:(n+1)+(n+2)+…+(n+n)=
| n(3n+1) |
| 2 |
练习册系列答案
相关题目