题目内容
已知数列{an}的每一项都是正数,满足a1=2,且an+12-anan+1-2an2=0;等差数列{bn}的前n项和为Tn,b2=3,T5=25.(1)求数列{an}、{bn}的通项公式;
(2)比较
| 1 |
| T1 |
| 1 |
| T2 |
| 1 |
| Tn |
(3)若
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
分析:(1)整理an+12-anan+1-2an2=0得(an+1-2an)(an+1+an)=0,进而求得an+1=2an,数列{an}是以2为首项,2为公比的等比数列,进而根据等比数列通项公式求得an,根据b2=3,T5=25.求得等差数列的首项和公差进而求得bn.
(2)由(1)得Tn,进而求得
,先看当n=1时
<2,进而利用
<
=
-
利用裂项法求和,进而求得
+
+…+
<2-
<2.
(3)令Pn=
+
+…+
=
+
+
+…+
.把(1)中求得的an和bn代入Pn,利用错位相减法求得Pn,进而判断Pn递增,求得Pn的范围,进而求得c的最小值.
(2)由(1)得Tn,进而求得
| 1 |
| Tn |
| 1 |
| T1 |
| 1 |
| n2 |
| 1 |
| (n-1)n |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| T1 |
| 1 |
| T2 |
| 1 |
| Tn |
| 1 |
| n |
(3)令Pn=
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
解答:解:(1)an+12-anan+1-2an2=0
得(an+1-2an)(an+1+an)=0,
由于数列{an}的每一项都是正数,∴an+1=2an,∴an=2n.
设bn=b1+(n-1)d,由已知有b1+d=3,5b1+
d=25,
解得b1=1,d=2,∴bn=2n-1.
(2)由(1)得Tn=n2,∴
=
,
当n=1时,
=1<2.
当n≥2时,
<
=
-
.
∴
+
+…+
<1+
-
+
-
++
-
=2-
<2.
(3)记Pn=
+
+…+
=
+
+
+…+
.
∴
Pn=
+
++
+
,
两式相减得Pn=3-
.
∵Pn递增,∴
≤Pn<3,P4=
>2,
∴最小的整数c=3.
得(an+1-2an)(an+1+an)=0,
由于数列{an}的每一项都是正数,∴an+1=2an,∴an=2n.
设bn=b1+(n-1)d,由已知有b1+d=3,5b1+
| 5×4 |
| 2 |
解得b1=1,d=2,∴bn=2n-1.
(2)由(1)得Tn=n2,∴
| 1 |
| Tn |
| 1 |
| n2 |
当n=1时,
| 1 |
| T1 |
当n≥2时,
| 1 |
| n2 |
| 1 |
| (n-1)n |
| 1 |
| n-1 |
| 1 |
| n |
∴
| 1 |
| T1 |
| 1 |
| T2 |
| 1 |
| Tn |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
(3)记Pn=
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
∴
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n+1 |
两式相减得Pn=3-
| 2n+3 |
| 2n |
∵Pn递增,∴
| 1 |
| 2 |
| 37 |
| 16 |
∴最小的整数c=3.
点评:本题主要考查了等差数列的性质和数列的求和问题.对于一些常用的数列的求和方法如公式法、错位相减法、叠加法、裂项法等应熟练掌握.
练习册系列答案
相关题目