题目内容
设函数f(x)=A.当a<0时,x1+x2<0,y1+y2>0
B.当a<0时,x1+x2>0,y1+y2<0
C.当a>0时,x1+x2<0,y1+y2<0
D.当a>0时,x1+x2>0,y1+y2>0
【答案】分析:画出函数的图象,利用函数的奇偶性,以及二次函数的对称性,不难推出结论.
解答:
解:当a<0时,作出两个函数的图象,如图,
因为函数f(x)=
是奇函数,所以A与A′关于原点对称,
显然x2>-x1>0,即x1+x2>0,
-y1>y2,即y1+y2<0
故选B.
点评:本题考查的是函数图象,直接利用图象判断;也可以利用了构造函数的方法,利用函数与导数知识求解.要求具有转化、分析解决问题,由一般到特殊的能力.题目立意较高,很好的考查能力.
解答:
因为函数f(x)=
显然x2>-x1>0,即x1+x2>0,
-y1>y2,即y1+y2<0
故选B.
点评:本题考查的是函数图象,直接利用图象判断;也可以利用了构造函数的方法,利用函数与导数知识求解.要求具有转化、分析解决问题,由一般到特殊的能力.题目立意较高,很好的考查能力.
练习册系列答案
相关题目