题目内容
(2011•孝感模拟)△ABC中,角A,B,C所对的边分别为a,b,c,向量
=(a+c,a-b),
=(sinA-sinC,-sinB),且
⊥
.
(I)求角C的大小;
(Ⅱ)设函数f(x)=sin
+2cos2
,求f(A)的取值范围.
| m |
| n |
| m |
| n |
(I)求角C的大小;
(Ⅱ)设函数f(x)=sin
| x |
| 2 |
| x |
| 4 |
分析:(I)通过向量的数量积,余弦定理,直接求出角C的大小;
(Ⅱ)利用二倍角公式辅助角公式化简函数f(x)=sin
+2cos2
,通过C的值,推出A的范围,然后确定f(A)的取值范围.
(Ⅱ)利用二倍角公式辅助角公式化简函数f(x)=sin
| x |
| 2 |
| x |
| 4 |
解答:解:(I)因为
=(a+c,a-b),
=(sinA-sinC,-sinB)且
⊥
,
(a+c,a-b)•(sinA-sinC,-sinB)=0,
可得(a+c)(a-c)=(a-b)b,
即:ab=a2+b2-c2,
cosC=
=
,C∈(0,π)
C=
.
(Ⅱ)函数f(x)=sin
+2cos2
=sin
+cos
+1
=
sin(
+
)+1,
f(A)=
sin(
+
)+1又C=
,
∴A+B=
,∴0<A<
,
∴
<
+
<
,
又∵sin
<sin
,
∴
<sin(
+
) ≤1.
2<f(A)≤
+1.
| m |
| n |
| m |
| n |
(a+c,a-b)•(sinA-sinC,-sinB)=0,
可得(a+c)(a-c)=(a-b)b,
即:ab=a2+b2-c2,
cosC=
| a2+b2-c2 |
| 2ab |
| 1 |
| 2 |
C=
| π |
| 3 |
(Ⅱ)函数f(x)=sin
| x |
| 2 |
| x |
| 4 |
=sin
| x |
| 2 |
| x |
| 2 |
=
| 2 |
| x |
| 2 |
| π |
| 4 |
f(A)=
| 2 |
| A |
| 2 |
| π |
| 4 |
| π |
| 3 |
∴A+B=
| 2π |
| 3 |
| 2π |
| 3 |
∴
| π |
| 4 |
| A |
| 2 |
| π |
| 4 |
| 7π |
| 12 |
又∵sin
| π |
| 4 |
| 7π |
| 12 |
∴
| ||
| 2 |
| A |
| 2 |
| π |
| 4 |
2<f(A)≤
| 2 |
点评:本题是中档题,考查三角函数的化简求值,向量的数量积、余弦定理的应用,考查计算能力.
练习册系列答案
相关题目